REINFORCED GONCRETE BESIGN

•

REINFORCED GONCRETE BESIGN COMPILED & EDITED BY: In Compiled & EDITED BY: In Compiled & EDITED BY:

Publisher Universiti Malaysia Pahang Kuantan 2020 Copyright © Universiti Malaysia Pahang, 2020

First Published, 2020

All right reserved.

Apart from fair dealing for the purpose of study, research, criticism or review, as permitted under the Copyright Act, no part of this book may reproduced, strored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Enquiries to be made to the author and the publisher, Penerbit Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur. Negotiation subject to royalty arrangement or honorarium.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Fadzil Mat Yahaya

Reinforced Concrete Design / Fadzil bin Mat Yahaya,
Chin Siew Choo, Sharifah Maszura Syed Mohsin, Gul Ahmed Jokhio.
ISBN 978-967-2054-88-7
1. Reinforced concrete construction. 2. Buildings, Reinforced concrete.
3. Concrete construction. 4. Government publications--Malaysia.
I. Chin, Siew Choo. II. Sharifah Maszura Syed Mohsin.
III. Jokhio, Gul Ahmed. IV. Title.
624.18341

Published By: Publisher

Universiti Malaysia Pahang Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Darul Makmur Tel: 09-549 3273 Fax: 09-549 3281

Printing:

PNC Printing

No.2, Tingkat Bawah, Taman Damai Indah, Peramu, 26600, Pekan, Pahang Darul Makmur Tel: 09-425 2010

PREFACE

This book is written mainly to assist undergraduate civil engineering students who are currently taking the subjects of Reinforced Concrete Design I and II. The content of this module consists of design theories and principles, examples related to design in reinforced concrete structures as well as relevant problems related to the construction industry. This book is merely for internal circulation within Universiti Malaysia Pahang (UMP) for the usage of Undergraduate Degree of Civil Engineering students only.

The contents of this module are written based on Eurocode 2: Design of concrete structures (EN 1992: 2004) of the European Committee of Standardization. This book also covers some of the principles from the British Code, BS 8110 as well as Part 1 of Eurocode 2; general rules for buildings. Eurocode 2 is used along with Eurocode 0: Basis of structural design with reference primarily on the analysis and Eurocode 1: Actions on structures that covers loadings.

This book consists of eight chapters that covers the important topics in reinforced concrete design which necessary to be taught in the degree of Civil Engineering. This book provides all the principles and limit state design, design engineering problems, by providing information on fundamental knowledge. Based on that, students have to analyse, synthesize and evaluate the examples and problems provided in this book. Through this book, students would acquire knowledge to construct detailing for all structural elements in every topic. It is made known that the students must not limit themselves by referring only to this book but to refer all other possible sources of reference to obtain a full understanding of the subjects (Reinforced Concrete Design I and II).

•

ACKNOWLEDGEMENT

The authors would like to express their gratitude to all parties involved directly or indirectly in completing this book. Suggestions are most welcome from readers to further improve this book in any manner. Last but not least, the authors would like to thank God Almighty for the strength given to complete this book successfully.

GENERAL

Reinforced concrete buildings consist of several structural members (components). Each of these members interact to support the loads placed on the structure. The basic members of a reinforced concrete building as shown in Figure 1 include:

1. Beams :	Horizontal members carrying lateral loads.
2. Slabs :	Horizontal plate elements carrying loads.
3. Columns:	Vertical members carrying primarily axial loads but generally subjected to axial load and moment.
4. Walls :	Vertical plate elements resisting vertical, lateral or in-plane loads.
5. Foundations:	Pads or strip footing supported directly on the ground that transmit loads from columns and walls to the ground.

Figure 1: Structural members of a reinforced concrete building

TABLE OF CONTENTS

Preface Acknow	ledgem	ent	v vii	
General			ix	
СНАРТ	ER 1:	INTRODUCTION TO FIRST PRINCIPLE AND BEAM DESIGN		
1.0	Reinfo	orced Concrete	1	
1.1	Struct	ural Design	1	
1.2	Code	of Practice	2	
1.3	Basic	Design Requirement	2	
	1.3.1	Design Working Life	2	
1.4	Limit	State Design	2	
	1.4.1	Ultimate limit state (ULS)	3	
	1.4.2	Serviceability limit state (SLS)	3	
	1.4.3	Action	3	
	1.4.4	Design Action and Action Combination	4	
1.5	Design	n for Flexure	5	
	1.5.1	Introduction	5	
	1.5.2	Concrete Strength	5	
	1.5.3	Concrete Modulus of Elasticity	6	
	1.5.4	Steel Strength	7	
	1.5.5	Behaviour of Beam in Bending	8	
	1.5.6	Distribution of Stress and Strain	9	
1.6	Rectangular Section			
	1.6.1	Double Reinforced Section	13	
	1.6.2	Design Procedure for Rectangular Section	13	
1.7	Flange	e Sections	15	
	1.7.1	Analysis of Section	15	
	1.7.2	Neutral Axis in Flange	15	
	1.7.3	Neutral Axis in the Web: Singly Reinforced	16	
	1.7.4	Neutral Axis in the Web: Doubly reinforced	17	
	1.7.5	Design Procedure for Flange Section	18	
1.8	Design	n for Shear	19	
	1.8.1	Introduction	19	
	1.8.2	Design Method	20	
	1.8.3	The Diagonal Compressive Strut	20	
	1.8.4	Vertical Shear Reinforcement	21	
	1.8.5	Additional Longitudinal Force	22	
	1.8.6	Design Procedure for Shear Reinforcement	23	
	1.8.7	Shear between Web and Flange of a Flange Section	24	
	1.8.8	Minimum Area of Reinforcement in the Flange	25	
	1.8.9	Section Not Requiring Design Shear Reinforcement	25	
1.9	Deflec	ction and Cracking	25	
	1.9.1	Introduction	25	

	1.9.2 Limiting span to Depth Ratio	26
	1.9.3 Cracking	27
	1.9.4 General Consideration	28
	1.9.5 Minimum Reinforcement Area	28
1.10	Durability and Detailing Requirement	30
	1.10.1 Minimum Cover for Bond	30
	1.10.2 Minimum Cover for Durability	31
	1.10.3 Minimum Cover for Fire	32
	1.10.4 Exposure Class	35
	1.10.5 Minimum and Maximum Area of Reinforcement	36
	1.10.6 Spacing of Bars	36
Examp	bles	37
Probler	ms	78

CHAPTER 2: DESIGN OF SLABS

2.1	Introduction		
2.2	Non-s	suspended slab vs Suspended Slab	85
2.3	Desig	gn Procedure	88
2.4	Analy	ysis	88
	2.4.1	Design of flexural reinforcement	89
	2.4.2	Shear	89
	2.4.3	Deflection	89
	2.4.4	Cracking	89
	2.4.5	Detailing	90
2.5	Desig	gn of Solid Slab	91
	2.5.1	One-way spanning slab	91
	2.5.2	Two-way spanning slab	92
2.6	Steel	reinforcement	99
	2.6.1	BRC wire mesh	99
Exam	ples		102
Proble	ems		121

CHAPTER 3: DESIGN OF STAIRS

3.1	Introduction	123
3.2	Main Parts of Stairs	124
3.3	Types of Stairs	124
3.4	General Design Considerations	125
3.5	Average Thickness	126
3.6	Design Procedure	126
3.7	Detailing	127
Exampl	128	
Problem	ns	144

CHAPTER 4: FRAME ANALYSIS

4.1	Introduction	147
4.2	Types of Frames	147
4.3	Method of Analysis	147
4.4	Actions and Combination of Actions	149

4.5	Analy	149	
4.6	Calculation of Wind Loads		149
	4.6.1	Simplified procedure	150
	4.6.2	Analytical procedure	150
Examp	les		152
Problem	ns		191

CHAPTER 5: DESIGN OF COLUMNS

195
196
196
196
197
198
199
199
200
200
201
202
205
227

CHAPTER 6: DESIGN OF FOUNDATIONS

6.1	Introd	luction	231
6.2	Shallo	Shallow Foundation	
	6.2.1	Ultimate Limit State (ULS) of Foundation	234
	6.2.2	Serviceability State of Foundation	234
	6.2.3	Selection of Foundation	234
	6.2.4	Design Considerations	235
	6.2.5	Pad Footing Design	235
		6.2.5.1 Design for flexure	236
		6.2.5.2 Check for shear	237
		6.2.5.3 Cracking and detailing	238
6.3	Pile fo	239	
	6.3.1	Introduction	239
	6.3.2	Design of Pile Cap	239
	6.3.3	Design for Shear	239
	6.3.4	Truss Analogy Method	240
	6.3.5	Beam Theory Method	240
Exam	ples		241
Proble	ems		264

CHAPTER 7: RETAINING WALL DESIGN

7.1	Introduction	265
7.2	Types of Retaining Wall	266

7.3	Analysis and Design	266
7.4	Stability Analysis	267
7.5	Element Design and Detailing	271
Examples		275
Problems		281

CHAPTER 8: INTRODUCTION TO PRESTRESSED CONCRETE

8.1	Introd	luction	283
8.2	Advar	ntages and Disadvantages	285
	8.2.1	Advantages of Prestressed Concrete	285
	8.2.2	Disadvantages of Prestressed Concrete	286
8.3	Metho	ods of Prestressing	287
	8.3.1	Basic Principles of Prestressing	287
	8.3.2	Pre-tensioning	287
	8.3.3	Post-tensioning	289
8.4	Sign-0	Convention	290
8.5	Prestr	ressing Materials	290
	8.5.1	Prestressing Concrete	290
	8.5.2	Prestressing Steel	290
8.6	Losse	s in Prestress	293
	8.6.1	Immediate or Short-term Losses	293
	8.6.2	Time-dependent or Long-term Losses	294
8.7	Stress	ses in Prestressed Members	294
	8.7.1	Axial Prestressing	295
	8.7.2	Eccentric Prestressing	301
	8.7.3	Stresses after Losses	306
8.8	Stress	s Limits in Prestressed Concrete	308
	8.8.1	Prestressing Force and Eccentricity Calculation	309
	8.8.2	Magnel's Graphical Method	313
8.9	Desig	n of Prestressed Concrete Members	316
	8.9.1	Determination of Cross-section Dimensions	316
Examples			318
Problems			321
Reference			323
Authors' H	Biodata		325

CHAPTER 1: INTRODUCTION TO FIRST PRINCIPLE AND BEAM DESIGN

Reinforced Concrete

Reinforced concrete (RC) is a combination material between concrete and steel. As known, concrete has low tensile strength and ductility compared to steel. This low tensile material is counteracted by the inclusion of reinforcement having higher tensile strength. The reinforcement is usually, though not necessarily, steel reinforcing bars (rebar) and is typically embedded passively in the concrete before the concrete sets. Reinforcing schemes are generally designed to resist tensile stresses in particular regions of the concrete that might cause unacceptable cracking and/or structural failure. Modern reinforced concrete can contain varied reinforcing materials made of steel, polymers or alternate composite material in conjunction with rebar or not. Reinforced concrete may also be permanently stressed (in compression), so as to improve the behaviour of the final structure under working loads. In the United States, the most common methods of doing this are known as pre-tensioning and post-tensioning. Table 1.1 shows the properties of concrete and steel with its strength.

Table 1.1:	Characteristic	of reinforced	concrete	components
-------------------	----------------	---------------	----------	------------

Properties	Concrete	Steel
Strength in compression	Good	Good, but slender bar will buckle
Strength in tension	Poor	Good
Strength in shear	Fair	Good
Durability	Good	Poor (Corroded), if unprotected
Fire resistance	Good	Poor

For a strong, ductile and durable construction, the reinforcement needs to have the following properties at least:

- High relative strength
- High toleration of tensile strain
- Good bond to the concrete, irrespective of pH, moisture, and similar factors
- Thermal compatibility, not causing unacceptable stresses in response to changing temperatures
- Durability in the concrete environment, irrespective of corrosion or sustained stress for example

1.1 Structural Design

Structural design is the purpose of determination of reliable structural system, selection of suitable materials and obtaining the optimum member sizes for the structure to be built. The aim of structural design is to ensure that the structure performs satisfactorily during its design

life. The basic requirements in which the structure should comply with can be summarized as follows:

- 1) Fitness for purpose
- 2) Safety and reliability
- 3) Economy
- 4) Maintainability

1.2 Code of Practice

Code of practice is a document that gives recommendations for the design and construction of structures. It contains detailed requirements regarding loads, stresses, strengths, design formulae and methods of achieving the required performance of completed structures. The codes have evolved from the collective wisdom of expert structural engineers, gained over the years. These codes are periodically revised to ensure that they are in line with current research, technology and often trends.

1.3 Basic Design Requirement

1.3.1 Design Working Life

The design working life is a term used for which a structure or part of it is to be used for its intended purposed with anticipated maintenance but without major repair being necessary. MS EN 1990: Cl.2.3 stated the design life for structure to be used during design. Table 1.2 shows the design life in years as given by The Malaysia National Annex to Eurocode.

Table 1.2: Design working life categories with structures design purpose

Design working life category	Indicative design working life (years)	Examples
1	10	Temporary structures
2	10 to 30	Replaceable structural parts e.g. gantry girders, bearings
3	15 to 25	Agricultural and similar structures
4	50	Building structures and others
5	120	Monumental building structures, bridges and others civil engineering structures

(Source: Table NA1: MS EN 1990: National Annex)

1.4 Limit State Design

The design method discussed in Eurocode 2 is based on limit state principle. A limit state can be defined as the state of a structure which represents the acceptable limit of an aspect of structural behaviour. The criterion for safe design is that the structure should not become unfit